Reliable Iterative Condition-Number Estimation
نویسندگان
چکیده
The talk will present a reliable Krylov-subspace method for estimating the spectral condition number of a matrix A. The main difficulty in estimating the condition number is the estimation of the smallest singular value min of A. Our method estimates this value by solving a consistent least-squares minimization problem with a known minimizer using a specific Krylov-subspace method called LSQR. In this method, the forward error tends to concentrate in the direction of a singular vector corresponding to min. Extensive experiments show that the method is very reliable. It is often much faster than a dense SVD and it can sometimes estimate the condition number when running a dense SVD would be impractical due to the computational cost or the memory requirements. The method uses very little memory (it inherits this property from LSQR) and it works equally well on square and rectangular matrices
منابع مشابه
ITERATIVE METHOD FOR SOLVING TWO-DIMENSIONAL NONLINEAR FUZZY INTEGRAL EQUATIONS USING FUZZY BIVARIATE BLOCK-PULSE FUNCTIONS WITH ERROR ESTIMATION
In this paper, we propose an iterative procedure based on two dimensionalfuzzy block-pulse functions for solving nonlinear fuzzy Fredholm integralequations of the second kind. The error estimation and numerical stabilityof the proposed method are given in terms of supplementary Lipschitz condition.Finally, illustrative examples are included in order to demonstrate the accuracyand convergence of...
متن کاملSpectral Condition-Number Estimation of Large Sparse Matrices
We describe a Krylov-subspace method for estimating the spectral condition number of a real matrix A or indicating that it is numerically rank deficient. The main difficulty in estimating the condition number is the estimation of the smallest singular value σmin of A. Our method estimates this value by solving a consistent linear least-squares problem with a known solution using a specific Kryl...
متن کاملSimultaneous robust estimation of multi-response surfaces in the presence of outliers
A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...
متن کاملReliable Minimax Parameter Estimation
This paper deals with the minimax parameter estimation of nonlinear parametric models from experimental data. Taking advantage of the special structure of the minimax problem, a new e¢cient and reliable algorithm based on interval constraint propagation is proposed. As an illustration, the ill-conditioned problem of estimating the parameters of a two-exponential model is considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1301.1107 شماره
صفحات -
تاریخ انتشار 2013